Publications논문

Biothermal sensing of a torsional artificial muscle
2016-10-24 18:06:02 조회수896
Sung-Ho Lee(a), Tae Hyeob Kim(a), Márcio D. Lima(b), Ray H. Baughman(b) and Seon Jeong Kim(a)* a) Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea. E-mail: sjk@hanyang.ac.kr b) The Alan G. MacDiarmid Nanotech Institute, University of Texas at Dallas, Richardson, TX 75083, USA 원문 링크 : http://pubs.rsc.org/en/Content/ArticleLanding/2016/NR/c5nr07195j

Abstract

Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25–37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation. 

 
사이트맵 닫기