Publications논문

Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide
2019-11-13 17:30:59 조회수845
Hyunsoo Kim,†,§ Ji Hwan Moon,†,§ Tae Jin Mun,† Tae Gyu Park,† Geoffrey M. Spinks,‡ Gordon G. Wallace,‡ and Seon Jeong Kim*,† †Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea ‡Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, New South Wales 2522, Australia 원문 링크 : https://pubs.acs.org/doi/10.1021/acsami.8b12426

Abstract

Graphene-based actuators are of practical interest because of their relatively low cost compared with other nanocarbon materials, such as carbon nanotubes. We demonstrate the simple fabrication of graphene oxide (GO)based fibers with an infiltrated nylon-6,6 polymer by wet spinning. These fibers could be twisted to form torsional actuators and further coiled to form tensile actuators. By controlling the relative twisting and coiling direction of the GO/nylon fiber, we were able to realize reversible contraction or elongation actuation with strokes as high as −80 and 75%, respectively, when the samples were heated to 200 °C. The tensile actuation showed a remarkably little hysteresis. Moreover, this GO/nylon actuator could lift loads over 100 times heavier than itself and generate a stable actuation at high temperatures over the melting point of the polymer. This novel kind of GObased actuator, which has a multidirectional actuation, has potential for a wide range of applications such as artificial muscles, robotics, and temperature sensing.  

 
사이트맵 닫기