Publications논문

Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors
2015-03-23 13:02:01 조회수2007
Changsoon Choi, Shi Hyeong Kim, Hyeon Jun Sim, Jae Ah Lee, A. Young Choi, Youn Tae Kim, Xavier Lepro , Geoffrey M. Spinks, Ray H. Baughman & Seon Jeong Kim Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University, Seoul 133-791, Korea, IT Fusion Technology Research Center and Department of IT Fusion Technology, Chosun University, Gwangju 501-759, Korea, The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA, Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia. 원문 링크 : http://www.nature.com/articles/srep09387

Abstract

Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet, and then electrochemically depositing pseudocapacitive MnO2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction, and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm2,
2.6 mWh/cm2 and 66.9 mW/cm2, respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.

 
사이트맵 닫기